A race of two compllers
Graal JIT vs. C2 JIT e
~Which one offers better runtlmej o

' performance’>
by iohu 3 EWDT 3b

lonutBalosin.com
3 @lonutBalosin

About Me.

Software Architect PNRsar
Technical Trainer
* _(Java Performance Tuning -

Software Architecture Essential_s

Designing High - Perfarmance Ap'pl.i"'ca‘tiohs '

< for more details please visit:. lonutBalosin.com/training >
LA R A ; 7 “"t"'_ T v N
YV lter lonutBalosin.com m

- Speaker
VOXXEDfoker <2y Dev<Talks/>|<pevDaysLid]tori Y

% IDEVOX
= . o N)'PDAYS
AL — _7 | K.E P DevFest
k'- - B E N ELUX wh’%ﬁcﬂ'}

geecon DevDays

abkEley >PbyLby

o1 Intro e - -
"_'03 V|rtual Calls | E i 8
4 Vectorlzatlon & Loop Opt|m|zat|ons

o) 05 Summary & Takeaways

el *- 3

e .','f £

IIIII

Source: [lonutBalosin.com/2019/04/jvm - jit - compilers - benchmarks - report - 19- 04]

JVM JIT Compilers Benchmarks Report 19.04

www.ionutbalosin.com Posted on 8th April 2019 by lonut Balosin

Configuration

CPU

MEMORY

OS / Kernel

Java Version

JVM

JMH v1.21

Intel i7 - 8550U Kaby Lake R

16GB DDR4 2400 MHz

Ubuntu 18.10/4.18.0 - 25- generic
13 Linux - x64

Open)DK

5x10s warm - up iterations, 5x10s measurement
iterations, 3 JVM forks, single threaded

Note: C2 JIT usually needs less warm - up iterations, being a native Compiler.

www.ionutbalosin.com

o This talk is NOT about GraalVMEE !

Current optimizations might differ for other JVMs!

www.ionutbalosin.com

Fair comparison?

www.ionutbalosin.com

ALWW - SY kLalbkt @®webzZ VyS

Application/end user : performance and (licensing) costs are the
leading factors

Compiler/internals (e.g. implementation, maturity): very different

www.ionutbalosin.com 9

) Graal JIT

V Java implementation

V still early stage (recently become
production ready; e.g. v19.2.1)

V targets JVM - based languages (e.g.
Java, Scala, Kotlin), dynamic
languages (e.g. JavaScript, Ruby, R),
native languages (e.g. C/C++, Rust)

<

modular design (JVMCI plug - in arch)

<

Ahead Of Time flavor (our of scope
b2 YDPKEGct qa2LtLbYyEYSPbL,

Note: non of these compilers are in maintenance.

C2 JIT 3

<

C++ implementation

<

mature / production grade runtime

<

written mainly to optimize Java
source code
V is essentially a local maximum of
performance and is reaching the end
of its design lifetime
V latest improvements were more
focused on intrinsics and
|y SwB@orization, rather than adding
new optimization heuristics

Note: non of these compilers are in maintenance.

Nevertheless, nowadays the baseline for Graal JIT still
remains C2 JIT!

The target is to leverage its performance to be at least

on par with C2 JIT especially on real world applications /
production code.

www.ionutbalosin.com

12

Few main distinguishing factors for Graal JIT

? Partial Escape Analysis

? Improved inlining

Guard optimizations for efficient

handling of speculative code

www.ionutbalosin.com

13

Main Graal Publications

Q Partial Escape Analysis and Scalar Replacement for Java

Lukas Stadler Thomas Warthinger Hanspeter MGssenbdck
Johannes Kepler University Oracle Labs Johannes Kepler University
Linz, Austria thomas.wuerthinger Linz, Austria

lukas.stadler@jku.at @oracle.com moessenboeck@ssw.jku.at

ABSTRACT

Escape Analysis allows a compiler to determine whether an
object is accessible outside the allocating method or thread.
This information is used to perform optimizations such as
Scalar Replacement, Stack Allocation and Lock Elision, al-
lowing modern dynamic compilers to remove some of the
abstractions introduced by advanced programming models.

The all-or-nothing approach taken by most Escape Anal-
ysis algorithms prevents all these optimizations as soon as
there is one branch where the object escapes, no matter how
unlikely this branch is at runtime.

This paper presents a new, practical algorithm that per-
forms control flow sensitive Partial Escape Analysis in a dy-
namic Java compiler. It allows Escape Analysis, Scalar Re-
placement and Lock Elision to be performed on individual

NN I L ¢ 3 APPR ARG [NEICLETIRNY R)y AR FFRrex |, ERSUOIIDNIR Sy (L% o LSRR |

1. INTRODUCTION

State-of-the-art Virtual Machines employ techniques such
as advanced garbage collection, alias analysis and biased
locking to make working with dynamically allocated objects
as efficient as possible. But even if allocation is cheap, it
still incurs some overhead. Even if alias analysis can remove
most object accesses, some of them cannot be removed. And
although acquiring a biased lock is simple, it is still more
complex than not acquiring a lock at all.

Escape Analysis can be used to determine whether an ob-
ject needs to be allocated at all, and whether its lock can
ever be contended. This can help the compiler to get rid of
the object’s allocation, using Scalar Replacement to replace
the object’s fields with local variables.

Escape Analysis checks whether an object escapes its al-

Aty IOty L e TR) eI e e e Tl o e e e A e T S e

15

In a nutshell

Partial Escape Analysis (PEA) determines the escapability of objects on
individual branches and reduces object allocations even if the objects
escapes on some paths.

PEAYT P2yt DPb 1 DPZgqSwLkLact SbylLe2ZLKkSEYL
It is effective in conjunction with other parts of the compiler, such as
inlining , global value numbering , and constant folding .

c Ll

www.ionutbalosin.com

16

Example

class Key {
int idx ;

Object ref ;

Key(int idx , Object ref) {
this .idx = idx ;
this . ref =ref;

}
synchronized boolean equals (Key other) {
return 1dx == other. idx && ref == other. ref ;
}
}
NUEZqwl ce2 b Partigl Esgdp@Analysis and Scalar Replacement for Java i .

www.ionutbalosin.com

17

static Key cacheKey ;

static Object cacheValue ;

/I Initial code

Object getValue (int idx , Objectref) {

Key key = new Key(idx , ref); +<—— Object is allocated
if (key.equals (cacheKey)) { D

return cacheValue ; —— No allocation needed on this branch
} else {

cacheKey =Kkey;

cachevalue = createValue (...);

return cacheValue

www.ionutbalosin.com

18

static Key cacheKey ;
static Object cacheValue ;

// Code after inlining and Partial Escape Analysis

Object getValue (int idx , Object ref){
Key tmp = cacheKey ;

if (idx == tmp. idx &&ref== tmp. ref){ // equals() method was inlined
return cacheValue ;
} else { : .
_ _ Obiject allocation is moved
Key key = alloc Key; . :
. o into the branch it escapes
key. idx = idx ;

key. ref =ref;

cacheKey = key;

cacheValue = createValue (...);
return cacheValue ;

}

www.ionutbalosin.com

