
www.ionutbalosin.com

Techniques for a faster
JVM start-up

 Ionuţ Baloşin



IonutBalosin.com | IonutBalosin

www.ionutbalosin.com

Agenda

01 When the JVM start-up matters

02 App/Dynamic Class-Data-Sharing in HotSpot VM

03 Shared Class Cache in Eclipse OpenJ9

04 Ahead-of-Time Compilation with GraalVM
native-image

2

www.ionutbalosin.com

About Me

Software Architect @ Raiffeisen Bank International
Technical Trainer | Security Champion | Blogger | Speaker

My Training Catalogue

Training figures: 80+ sessions | 900+ trainees | 1300+ hours | 10+ clients | 4+ countries
Conference figures: 35+ sessions | 14+ countries

www.IonutBalosin.com

Software Architecture Essentials

Designing High-Performance, Scalable, and Resilient Applications

Java Performance Tuning

Application Security for Java Developers

www.ionutbalosin.comwww.ionutbalosin.com

When the JVM
start-up matters

www.ionutbalosin.com 5

Applications where start-up time matters
- serverless applications (e.g., Function-as-a-Service)
- short-lived applications
- command-line applications

Benefits
- cost savings in cloud
- quick feedback loops during development cycles
- quick time-to-first-response in cold-start scenarios

www.ionutbalosin.com 6

cold start - start the app from scratch
warm start - prepare the app to reach a “steady” state
hot start - background to foreground transition (i.e., app is already in a “steady” state)

cold start warm start hot start

lower latency

www.ionutbalosin.com

App/Dynamic Class-Data-Sharing (CDS) HotSpot VM

Shared-Class-Cache (SCC) Eclipse OpenJ9

Ahead-of-Time (AOT) Compilation GraalVM native-image

OpenJDK CRaC (save the state of a JVM and restore it later)

OpenJDK Leyden (static application binaries with a faster start-up)

Alibaba Dragonwell JWarmUp

jlink/jpackage (possible improvements by removing modules)

Azul Prime ReadyNow!

(Few) JVM (Cold) Start-up Optimization Techniques

7

www.ionutbalosin.com

App/Dynamic Class-Data-Sharing (CDS) HotSpot VM

Shared-Class-Cache (SCC) Eclipse OpenJ9

Ahead-of-Time (AOT) Compilation GraalVM native-image

OpenJDK CRaC (save the state of a JVM and restore it later)

OpenJDK Leyden (static application binaries with a faster start-up)

Alibaba Dragonwell JWarmUp

jlink/jpackage (possible improvements by removing modules)

Azul Prime ReadyNow!

(Few) JVM (Cold) Start-up Optimization Techniques

8

current scope

www.ionutbalosin.comwww.ionutbalosin.com

App/Dynamic Class-Data
Sharing in HotSpot VM

www.ionutbalosin.com 10

Class Data Sharing (CDS) - caches preprocessed metadata on disk (i.e., default CDS
archive or static base CDS archive)

It contains 1300+ core library classes loaded by the bootstrap class loader

Classes are stored in a format that can be loaded very quickly (compared to classes
stored in a JAR file), hence improving the start-up time

In most JDK distributions CDS is enabled by default unless -Xshare:off is specified

CDS location

Linux> $JAVA_HOME/lib/server/classes.jsa

Windows> %JAVA_HOME%\\bin\\server\\classes.jsa

www.ionutbalosin.com 11

AppCDS - extends CDS to built-in system class loader (i.e. app class loader) and
custom class loaders (i.e., static archive)

AppCDS archive includes also core library classes (in the same archive) and it is a
three-step procedure

Classes stored in the CDS are a few times larger (e.g. 3-5x) than classes stored in JAR
files or the JDK runtime image

E.g., 3959 classes ~ 21.87 MiB (22392 KiB)

[info][cds] Shared spaces: preloaded 3959 classes

$ ls -l --block-size=1K
22392 -r--r--r-- 1 ionutbalosin ionutbalosin 22392 Mar 22 08:24 app-cds.jsa

www.ionutbalosin.com 12

Dynamic CDS - extends AppCDS to allow dynamically archiving at the end of the
Java process (i.e., dynamic archive)

It simplifies the AppCDS archive creation by eliminating the need to create the class
list (i.e., the initial AppCDS step), hence it is a two-step procedure

By default, dynamic CDS archive is created on top of the static base CDS archive
(e.g., classes.jsa) as a top-layer archive, and it implicitly uses less disk space

[info][cds] trying to map $JAVA_HOME/lib/server/classes.jsa
[info][cds] Opened archive $JAVA_HOME/lib/server/classes.jsa

[info][cds] trying to map dynamic-cds.jsa
[info][cds] Opened archive dynamic-cds.jsa

www.ionutbalosin.com 13

The static archive could be a default CDS archive (i.e., classes.jsa) or a static archive
(i.e., AppCDS archive)

Chaining CDS archives

Note: HotSpot VM does not allow more than two archives

static archive

Dynamic CDS 1

base layer archive

Dynamic CDS 2 top layer archive

Linux> -XX:SharedArchiveFile=<static_archive>:<dynamic_archive>

Windows> -XX:SharedArchiveFile=<static_archive>\;<dynamic_archive>

www.ionutbalosin.com

Few CDS, App/Dynamic CDS enhancements in HotSpot

14

1.5 CDS was introduced (only C1 JIT and Serial GC)

9 CDS was extended to C2 JIT and other GCs (e.g., Parallel, ParallelOld, G1) but had limited
shared Strings support (only with G1 GC for non-Win)

10 JEP 310: AppCDS

12 JEP 341: Default CDS Archives (generated at JDK build time)

13 JEP 350: Dynamic CDS Archives

15 JDK-8232081: Try to link all classes during dynamic CDS dump (i.e., not linked)

JDK-8198698: Support Lambda proxy classes in dynamic CDS archive

JEP 377: ZGC (production-ready) supports CDS

16 JDK-8247666: Support Lambda proxy classes in static CDS archive

17 JDK-8261090: Store old class files in static CDS archive

18 JDK-8272331: Automatically generate the CDS archive if necessary

19 JDK-8261455: Automatically generate the CDS archive if necessary

www.ionutbalosin.com

Examples
rw – vtables
ro – SymbolTable, StringTable, SystemDictionary
bm – bitmap that marks locations of all pointers
across different regions within the archive
oa0, oa1 – java basic types (e.g., Boolean, Char,
Float, etc.), Klass* objects (e.g., Instance*Klass*,
TypeArrayKlass*, ObjArrayKlass*)
ca0, ca1 – interned strings

Archive is mapped at the default shared base address 0x800000000
Address Space Layout Randomization (ASLR) might impact this

-XX:SharedBaseAddress=<new_address> overrides the default shared base address or use
-XX:SharedBaseAddress=0 to map it at an OS selected address

15

cao (closed archive 1)

ca1 (closed archive 2) might be empty

oa0 (open archive 1)

oa1 (open archive 2) might be empty

rw (read write)

ro (read only)

bm (bitmap)

CDS Structure (7 regions)
sh

ar
ed

Ja
va

 H
ea

p
sh

ar
ed

M

et
as

p
ac

e

www.ionutbalosin.com 16

[info][cds] Dumping shared data to file:

[info][cds] cds.jsa

[info][cds] Shared file region (rw) 0: 8096560 bytes, addr 0x0000000800000000 offset 0x00001000 crc 0x60844844

[info][cds] Shared file region (ro) 1: 13020552 bytes, addr 0x00000008007b9000 offset 0x007ba000 crc 0x01e83206

[info][cds] Shared file region (bm) 2: 381560 bytes, addr 0x0000000000000000 offset 0x01425000 crc 0xdc5dfa66

[info][cds] Shared file region (ca0) 3: 925696 bytes, addr 0x00000007bfc00000 offset 0x01483000 crc 0xe5fe2616

[info][cds] Shared file region (oa0) 5: 724992 bytes, addr 0x00000007bf800000 offset 0x01565000 crc 0xf7881f99

$ java -Xlog:cds -XX:ArchiveClassesAtExit=cds.jsa ...

default shared base address

www.ionutbalosin.com 17

Demo Time
@See https://github.com/ionutbalosin/faster-jvm-start-up-techniques

#section: App/Dynamic Class Data Sharing (CDS) in HotSpot JVM

www.ionutbalosin.com 18

Scenario: measure start-up time to first request[1] for the Spring PetClinit app

[1] - accurate way to reflect how long a framework needs to start (i.e., avoiding lazy initialization techniques)

Trial run default
(elapsed in sec)

dynamic CDS
(elapsed in sec)

1 7.167 5.907

2 7.165 5.968

3 7.034 5.689

4 6.867 5.764

hint: lower is better

Configuration
OpenJDK 19
Ubuntu 22.04.1 LTS / 5.15.0-47-generic
Intel i7-8550U Kaby Lake R
32GB DDR4 2400 MHz

www.ionutbalosin.com

App/Dynamic CDS brings noticeable start-up improvements (if properly created)

Dynamic CDS archives should be created after a broader usage of the application
(covering different use cases) and not by just starting and immediate stopping the
application (i.e., classes are lazily loaded)

The more recent JDK version to use the better

Note: App/Dynamic CDS also reduces the memory footprint if the same cache is shared across multiple
JVMs (i.e., process resident set size) – not covered by this presentation

Summary

19

www.ionutbalosin.com

Running the CDS archive with a different JDK version than it was created with does
not work (i.e. upgrading the JDK without regenerating the archive) - fixed in JDK 18
(JDK-8272331)

CDS archive is not cross-platform reusable (e.g., Linux, Windows, macOS)

Running the CDS archive with a modified jar timestamp that it was created with
does not work (i.e., dynamic archive is disabled, just the base layer archive is used)

App/Dynamic CDS omits all the jars referred by other jars as “class-path” attributes

CDS archive does not support pre JDK 5/6 classes (JDK-8202556, JDK-8230413)

Constraints

20

www.ionutbalosin.comwww.ionutbalosin.com

Shared-Class-Cache (SCC)
in Eclipse OpenJ9

www.ionutbalosin.com

Shared Class Cache (SCC) is a memory-mapped file that stores mainly Java classes
(e.g., ROMClass), profile data, compiled machine code (e.g., AOT), etc.

Introduced in 2007 (IBM SDK for Java 6)

Custom class loaders
 do not have class sharing support unless they extend java.net.URLClassLoader
 otherwise, helper APIs (e.g., com.ibm.oti.shared package) are provided

Every time a new class (not part of the cache) is loaded, it is dumped into the SCC

22

www.ionutbalosin.com

ROMClass - pointers to interfaces, superclass, inner classes, etc.
RAMClass - vtable, itable, Constant Pool, etc.

Only the ROMClasses are stored in SCC, RAMClasses are in the local memory of each JVM

23

Compiled code (AOT with metadata, etc.)

J9ROMClass

Profile data (for JIT Compiler)

...

SCC Structure

.class

RAMClass

ROMClass

Class chain (for ROMClasses)

www.ionutbalosin.com 24

Demo Time
@See https://github.com/ionutbalosin/faster-jvm-start-up-techniques

#section: Shared Classes Cache (SCC) and Dynamic AOT in Eclipse OpenJ9 JVM

www.ionutbalosin.com 25

Scenario: measure start-up time to first request[1] for the Spring PetClinit app

[1] - accurate way to reflect how long a framework needs to start (i.e., avoiding lazy initialization techniques)

Trial run no SCC
(elapsed in sec)

SCC
(elapsed in sec)

1 7.167 4.486

2 7.165 4.477

3 7.034 4.438

4 6.867 4.370

hint: lower is better

Configuration
OpenJ9 0.32.0 / OpenJDK 18.0.1
Ubuntu 22.04.1 LTS / 5.15.0-47-generic
Intel i7-8550U Kaby Lake R
32GB DDR4 2400 MHz

www.ionutbalosin.com

SCC (combined with AOT) offers great start-up performance improvement

Highly customizable via command-line options

Note: SCC also reduces the memory footprint if the same cache is shared across multiple JVMs (i.e.,
process resident set size) - not covered by this presentation

Summary

26

www.ionutbalosin.comwww.ionutbalosin.com

Ahead-of-Time
Compilation with
GraalVM native-image

www.ionutbalosin.com

GraalVM native image compiles Java bytecode and generates native machine
executables Ahead-of-Time (i.e., at build time). These executables start up almost
instantly

 based on an iterative approach (intertwined by points-to analysis) parts of an application are run at
build time, objects are allocated and snapshots are created

 points-to analysis results are used to AOT compile the reachable parts of an application

Source [“Initialize Once, Start Fast: Application Initialization at Build Time“ paper]

28

App

Libs

JDK

Substrate VM

Configure and
initialize app

Snapshot based
on reacheable

code and objects

Code

Image Heap

Executable

Overall Process

www.ionutbalosin.com 29

Demo Time
@See https://github.com/ionutbalosin/faster-jvm-start-up-techniques

#section: Ahead-of-Time (AOT) with GraalVM native-image

www.ionutbalosin.com 30

Scenario: measure start-up time to first request for the Spring PetClinit app

Trial run Elapsed in sec

1 0.197

2 0.194

3 0.190

4 0.195

hint: lower is better

Configuration
GraalVM CE 22.0.0.2 native image
Ubuntu 22.04.1 LTS / 5.15.0-47-generic
Intel i7-8550U Kaby Lake R
32GB DDR4 2400 MHz

www.ionutbalosin.com

Use AOT with GraalVM native-image when start-up time is a raw concern

Dependencies
- Java framework must have support for GraalVM native-image (most of them already have

such; e.g., Quarkus, Spring, Micronaut, Helidon, etc.)
- additionally, the external dependencies must also be prepared for AOT (quite a challenge at

the moment)

Note: replacing HotSpot VM with GraalVM native-image for long-running applications (e.g.,
microservices) is not the topic of this presentation

Summary

31

www.ionutbalosin.com

Some features require additional configuration, otherwise, a fallback image is generated (that
launches the Java HotSpot VM)
- e.g., dynamic class loading, reflection, dynamic proxy, JNI , etc.

Some features are not yet supported with the closed-world optimization, and if used, lead to a
fallback image
- e.g., invokedynamic, Security Manager, etc.

Features that may operate differently in the native image
- e.g., signal handlers, class initializers, finalizers, unsafe memory access, debugging, and,

monitoring, etc.

See: [https://www.graalvm.org/$version/reference-manual/native-image/Limitations/]

Limitations

32

www.ionutbalosin.comwww.ionutbalosin.com

Thank You

33

www.ionutbalosin.com

App/Dynamic Class Data Sharing In HotSpot JVM (Ionut Balosin)

Faster JMV Start-up Techniques (Ionut Balosin)

OpenJDK sources

OpenJ9 sources

Class data sharing in the HotSpot VM (Volker Simonis)

cl4cds (Volker Simonis)

Building Class Data Sharing Archives with Apache Maven (Gunnar Morling)

AppCDS for Spring Boot applications: first contact (Vladimir Plizga)

Startup Challenges (Claes Redestad)

Heap Archiving (Claes Redestad)

Java Ahead-of-Time Compilation with Oracle GraalVM (Christian Wimmer)

Improving GraalVM Native Image (Christian Wimmer)

It's always sunny with OpenJ9 (Dan Heidinga)

Optimize JVM start-up with Eclipse OpenJ9 (Marius Pirvu)

The multi-layer shared class cache for Docker (Younes Manton)

JIT and AOT in the JVM (Mark Stoodley)

Class sharing in Eclipse OpenJ9 (Ben Corrie, Hang Shao)

References

34

https://ionutbalosin.com/2022/04/application-dynamic-class-data-sharing-in-hotspot-jvm
https://github.com/ionutbalosin/faster-jvm-start-up-techniques
https://github.com/openjdk/jdk
https://github.com/eclipse-openj9/openj9
https://www.youtube.com/watch?v=fqUG1rr-y78
https://simonis.github.io/cl4cds
https://www.morling.dev/blog/building-class-data-sharing-archives-with-apache-maven
https://medium.com/@toparvion/appcds-for-spring-boot-applications-first-contact-6216db6a4194
https://www.youtube.com/watch?v=3r_tHGtpU7A
http://cr.openjdk.java.net/~redestad/slides/heap_archiving.pdf
https://www.youtube.com/watch?v=KPV2OdQTrI8
https://www.youtube.com/watch?v=RMtukctD220
https://www.slideshare.net/DanHeidinga/its-always-sunny-with-openj9
https://developer.ibm.com/articles/optimize-jvm-startup-with-eclipse-openjj9
https://blog.openj9.org/2019/11/05/the-multi-layer-shared-class-cache-for-docker
https://www.youtube.com/watch?v=gx8DVVFPkcQ
https://developer.ibm.com/tutorials/j-class-sharing-openj9

www.ionutbalosin.comwww.ionutbalosin.com

Appendix

www.ionutbalosin.com

CDS is memory-mapped at runtime and shared between multiple JVM instances (or
Docker containers) on the same host (with a shared file system)

Note: JVM #1 and JVM #2 also share the read-only parts of loaded libraries (dynamic linking; e.g.,
libjvm.so, libjava.so, etc.)

36

CDS

memory-mapped
archive

shared file system

Metaspace

Java Heap

Direct Memory

Code Cache

Thread Stacks

C-Heap

JVM Instance 1

Metaspace

Java Heap

Direct Memory

Code Cache

Thread Stacks

C-Heap

JVM Instance 2

www.ionutbalosin.com 37

Multi-layer SCC – different (hierarchical) Docker images could be created with
custom SCC layers on top of the others

Introduced in 2019 (Eclipse OpenJ9 0.17.0)

Characteristics
- each SCC layer is a separate file on disk
- every time a container starts it creates a new layer (copy-on-write). All below

layers are untouched (read-only)
- each layer could independently size

A single (default) cache is equivalent to multi-layer SCC with layer number 0

OS

OpenJ9

App framework

SCC Layer 0

SCC Layer 1

App classesSCC Layer 2 rw

ro

ro

ro

…

www.ionutbalosin.com 38

App CDS in HotSpot JVM

Dynamic CDS in HotSpot JVM

SCC and Dynamic AOT in Eclipse OpenJ9 JVM

Source [https://github.com/ionutbalosin/faster-jvm-start-up-techniques]

$ java -Xshare:off -XX:DumpLoadedClassList=app-cds.lst ...
$ java -Xshare:dump -XX:SharedClassListFile=app-cds.lst -XX:SharedArchiveFile=app-cds.jsa ...
$ java -XX:SharedArchiveFile=app-cds.jsa ...

$ java -XX:ArchiveClassesAtExit=dynamic-cds.jsa ...
$ java -XX:SharedArchiveFile=dynamic-cds.jsa ...

$ java -XX:SharedArchiveFile=app-cds.jsa -XX:ArchiveClassesAtExit=dynamic-cds.jsa ...

$ java -XX:SharedArchiveFile=app-cds.jsa:dynamic-cds.jsa

$ java -Xshareclasses:name=scc,cacheDir=. -Xscmx96m -XX:SharedCacheHardLimit=192m -Xquickstart ...

