UILDING
VOLUTIONARY
RCHITECTURES

THE FIGHTERI

A\
MUREX" LUXOFT

Xavier RENE-CORAIL lonut BALOSIN

@xcorail @ionutbalosin

INSPIRATIONS

OREILLY’

Building

Evolutionary

Architecture

SUPPORT CONSTANT CHANGE %)

Neal Ford, Rebecca Parsons & Patrick Kua

AGILE & ARCHITECTURI

=

ENEMIES ? ...

E ... OR FRIENDS ?

'%L% WORKING TOGETHER

MISCONCEPTIONS

hell is all fire. Actually, it’s all paperwork.”

RESPONDING TO CHANGE

BE RIGHT THE 1°T TIME

Is there one thing

that will never change?

AGILE & ARCHITECTURI

il
U

... OR FRIENDS ?

SOFTWARE ARCHITECTURE IS

{¢) Getty Images | Published in AvaxiSWSIEeN

DIVERGENT “-ILITIES

‘ Security
Performance f

. Performance
Modifiability f

WE NEED TO ELICIT

SOFTWARE ARCHITECTURE IS ...

-

A
| 17
«The important Stufl
v AVAILABILITY (Whatever that is) v MODIFIABILITY
v SCALABILITY v TESTABILITY
v SECURITY Ralph Johnson v FLEXIBILITY
v PERFORMANCE v MAINTAINABILITY
v o L ——— v

0
'EE EVOLVABILITY IS A SHARED KEY INGREDIENT

AGILITY IS ...

-

4
»
s move
| <The e
v" ORGANISATION qu'Ck'y 2t 5 v" MAINTAINABILITY
v' COLLABORATION OxfOrd D,'ctionary v TESTABILITY
v PLANNING v SIMPLICITY
v' SOFTWARE
e —

EN_
"E:> SOFTWARE EVOLVABILITY IS AT THE HEART OF AGILITY

AGILE & ARCHITECTURI

WORKING TOGETHER

NOT AGILE ARCHITECTURES

BIG BALL OF MUD

—_—

(/" / Comosing J .
471 { ' I 3

[
| inmpreres reclvr | Y

|
If Y \
| | N/
/ W/

|
T
Il

<~

|

N =

‘

o o)

[)
by
i == "“ ! ‘I\ \ I‘I
/ '\I Y
\ / | | |
) (mpans |7 @) ‘I .‘\ |
| AV
|| Y
| |
] |

| 1

/ |/ ‘ |

‘ ‘(

/ | /

/ /

! /‘ I\I

| / !l

mangenent

|
| /
|/
N/
N/

| /
IRYIAY,

[

I
[
|
[

Module graph for JDK 7 b65 rt.jar, mid 2009

SERVICES DEPENDENCY HELL

DB

uService

/ \

uService uService
DB %DB /

uService == uService uService
DB DB DB

—

uService uService | uService

DB DB DB

DB

uService

DATA DEPENDENCY FLOWS

uService

Client Request

'}

v

uService

/

<<DATA>>

uService

uService

A

v

S————

A

v

S———

K

uService

I_I

SHARED PACKAGES

-
Shared -

A

Module Module

INCREASE COMPONENTS COUPLING

DISTRIBUTED TRANSACTIONS

Client WebApp : Serviceil Servicei#2 |
Lo —J-———_—————f———-
eque
eque
S
Change DB
spo
request
<
=
Change DB
response
response ‘

INCREASE COMPONENTS COUPLING

SYMPTOMS

DIFFICULT TO INCORPORATE CHANGES

SLOW RELEASE CYCLES

| RUN

I'M SLOWER THAN A

HERD OF TURTLES STAMPEDING
THROUGH PEANUT BUTTER

BUT | RUN

DIFFICULT TO CARRY OUT

SUCCESSFUL RECIPI

DESIGN PRINCIPLES

KEEP IN MIND DESIGN PRINCIPLES

Do not sacrifice loose-coupling for performance

Prefer composition over inheritance

Design messages atomic and services stateless
Design remote interfaces coarse-grained

High cohesion inside modules, components
SOLID

DRY

YAGNI

ARCHITECTURAL STYLES

{ ﬁ} = EO - SOSO 3 @}g%f

————/

O

COMPONENT BOUNDARIE

COMPONENT

\ communication mechanisms with external

messages exchanged D
type
format

dependencies D

depends on
used by

/ coarse-grained API

iges

8 s

protocols

synchronisation type
synchronous
asynchronous

transmission way
one way

bi-directional

COMPONENT INTERNALI

HIGH COHESION\
LOOSE COUPLING
ENCAPSULATION
SOLID

COMPONENT

YAG NI/

OTHER PERSPECTIVES

MANAGEMENT OF BINDING TIME
RESOURCES } OBJECT AND DATA MODEL DECISIONS

Time awareness Data models Compile time
Threading model Data entities access levels Build time
Scheduling strategies Criteria for data retention / Load time
reservation _
Resource limits / P Run time

saturation

PAY ATTENTIOI

PROGRAMMING
LANGUAGES

' THESE MIGHT BECOME IREVERSIBLE DECISSIONS

FRAMEWORKS

THE DEPENDENCY RULE

The Clean Architecture

Controllers

|| Enterprise Business Rules

'- || Application Business Rules
‘ /D Interface Adapters

/D Frameworks & Drivers

Use Cases

P— W

Presenter |—> O‘t’l::u(t:?:rl

DB T

Use Case
Interactor

0 1>
Use Case
Interfaces Controller 3> nout Port

—

PROPER SERVICES DEPENDENCIEI

Business
Rules
l <I>—

Database
Interface

Database
‘ ——)I Database II

1] Business
] Rules

— GUI

i

[
L

DB

WHICH ONE

1S AN AGILE ARCHITECTURE ?

Throttoling strategy:
Intentional slowing of
network bandwidth to avoid
congestion

Load Balance Strategy - service [\
related:

« reporting -> Agent Based
Adaptive Load Balancing
« other-= Least Connection

From GEO DNS
(via HTTPS)

Local balancer vmufl i Local balancer

Web Layout

App Servers (Tomcat/Jetty)

4

Parallel processing: N
Several map-reduce jobs
which process logs from
HDFS for different type of

metrics/events Async Logs.

Authentification

—»| Service

Authorisation

Session
Validation

2

System logging Mode)
(Elastic + Kibana)

HDFS
(map-reduce)

Monitoring
(Hearthbeat,
Checks, Alerts)

Master-Master Async
Replication with other
Datacenters

ach

(Report

2. Service 1

r
ach

Service 2

/ Local balance M’ Local balancer >_.___ \, .
7
ach

JService N &

K Each service has atgast 2 iuslaneegbhd&ﬂggent Hosts-..__

Primary DB
(RW)

replication

——

__—
S

B

=

=
econdary g
(R/O) I

12

DB

Throttoling strategy:

o Limiting number of
messages that can be
processed to avoid
flooding the system
Limiting number of
threads / processes to
avoid performance
bottienecks

[N

Cache eviction strategy:

o LFU (LeastFrequently
Used

-\ |Caching strategy:

Service dependence ->

« 'Live'Reporting -> On-
Demand

fetcch

AN

« 'Heavy' Reporting -> Pre-

Component Diagram

RC = Rich Client

—» Dataflow

Authorization
Server

» Load Balancer

Real Time
Communication
Server 1

Real Time
Communication
Servern

Clerk 1

h 4

Internal Network

Clerk n

h 4

GOOD ~RCHITECTURES ENABLES
GILITY

TSN R L R —

GILITY ENABLES RCHITECTURE DESIGN

ESSENTIALS FOR THE TRIP

PROTOTYPING

¥ v Fitness Functions
v'Feature Toggles .
v'Green / Blue Deployments |

- -:\

_=
CONTINUOUS DEPLOYMENT

R TR

You are here!

RNy

_ N
ASTRONAUT ARCHITECT

ALIGNMENT & AUTONOMY

THE ARCHITECT IN THE TEAM

v" Architecture design ownership

v Applications prototyping

v" Architecture blueprints, references and diagrams
v Technical guidance

v' Review emerging design and keep consistency

’

BLENDING AGILE AND ARCHITECTURE

REAL CHALLENGE

&f 12 ARCHITECTURE ~ INTERNAL QUALITY — no visible
IS external value added for Customer

Backlog is mainly driven by “Customer value” —
. architectural activities are not given enough attention

@@ You, as ARCHITECT, ensure to make this valuable !

BACKLOG INGREDIENTS

X p @

X oore——

"(4 \ , ldeas
e

Functionality

,L | \" AN

| B — 0
NI% ~ BACKLOG —
ZL Jg Evaluation Feedback

) Technical Debt
Constraints

Life Cycle Requirements {é}@

Architecturally Significant Requirements

QUOTA RULI

FUNCTIONALITY ARCHITECTURAL +
OTHER TECHNICAL

WORKING TOGETHER BY MUTUAL AGREEMENTS ©

THANK YOU'!

@ionutbalosin
@xcorail
@Work at Murex

@Luxoft

[] . .
iN https://www.linkedin.com/company/luxoft

https://fr.linkedin.com/company/murex

https://twitter.com/pbourgau
https://twitter.com/work_at_murex
https://fr.linkedin.com/company/murex
https://fr.linkedin.com/company/murex

