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ENEMIES ? ...

E ... OR FRIENDS ?

'%L% WORKING TOGETHER




MISCONCEPTIONS

hell is all fire. Actually, it’s all paperwork.”




RESPONDING TO CHANGE




BE RIGHT THE 1°T TIME

Is there one thing

that will never change?
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SOFTWARE ARCHITECTURE IS
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DIVERGENT “-ILITIES
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WE NEED TO ELICIT




SOFTWARE ARCHITECTURE IS ...
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v o L ——— v

0
'EE EVOLVABILITY IS A SHARED KEY INGREDIENT



AGILITY IS ...
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AGILE & ARCHITECTURI

WORKING TOGETHER



NOT AGILE ARCHITECTURES



BIG BALL OF MUD
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Module graph for JDK 7 b65 rt.jar, mid 2009



SERVICES DEPENDENCY HELL
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DATA DEPENDENCY FLOWS
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SHARED PACKAGES
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Module Module

INCREASE COMPONENTS COUPLING




DISTRIBUTED TRANSACTIONS
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INCREASE COMPONENTS COUPLING




SYMPTOMS




DIFFICULT TO INCORPORATE CHANGES




SLOW RELEASE CYCLES

| RUN

I'M SLOWER THAN A

HERD OF TURTLES STAMPEDING
THROUGH PEANUT BUTTER

BUT | RUN



DIFFICULT TO CARRY OUT




SUCCESSFUL RECIPI




DESIGN PRINCIPLES

KEEP IN MIND DESIGN PRINCIPLES

Do not sacrifice loose-coupling for performance

Prefer composition over inheritance

Design messages atomic and services stateless
Design remote interfaces coarse-grained

High cohesion inside modules, components
SOLID

DRY

YAGNI



ARCHITECTURAL STYLES
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COMPONENT BOUNDARIE

COMPONENT

\ communication mechanisms with external
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COMPONENT INTERNALI

HIGH COHESION\
LOOSE COUPLING
ENCAPSULATION
SOLID

COMPONENT
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OTHER PERSPECTIVES

MANAGEMENT OF BINDING TIME
RESOURCES } OBJECT AND DATA MODEL DECISIONS

Time awareness Data models Compile time
Threading model Data entities access levels Build time
Scheduling strategies Criteria for data retention / Load time
reservation _
Resource limits / P Run time

saturation



PAY ATTENTIOI

PROGRAMMING
LANGUAGES

' THESE MIGHT BECOME IREVERSIBLE DECISSIONS

FRAMEWORKS



THE DEPENDENCY RULE

The Clean Architecture
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PROPER SERVICES DEPENDENCIEI
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WHICH ONE

1S AN AGILE ARCHITECTURE ?

Throttoling strategy:
Intentional slowing of
network bandwidth to avoid
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Throttoling strategy:

o Limiting number of
messages that can be
processed to avoid
flooding the system
Limiting number of
threads / processes to
avoid performance
bottienecks
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GOOD ~RCHITECTURES ENABLES
GILITY
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GILITY ENABLES RCHITECTURE DESIGN




ESSENTIALS FOR THE TRIP




PROTOTYPING




¥ v Fitness Functions
v'Feature Toggles .
v'Green / Blue Deployments |
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R TR




You are here!
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ASTRONAUT ARCHITECT




ALIGNMENT & AUTONOMY

THE ARCHITECT IN THE TEAM

v" Architecture design ownership

v Applications prototyping

v" Architecture blueprints, references and diagrams
v Technical guidance

v' Review emerging design and keep consistency

’



BLENDING AGILE AND ARCHITECTURE




REAL CHALLENGE

&f 12 ARCHITECTURE ~ INTERNAL QUALITY — no visible
IS external value added for Customer

Backlog is mainly driven by “Customer value” —
. architectural activities are not given enough attention

@@ You, as ARCHITECT, ensure to make this valuable !




BACKLOG INGREDIENTS
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Architecturally Significant Requirements



QUOTA RULI

FUNCTIONALITY ARCHITECTURAL +
OTHER TECHNICAL

WORKING TOGETHER BY MUTUAL AGREEMENTS ©
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